Compiling and running programs
from the command line

When you are working within a Java IDE you have simple buttons to click in order to carry out tasks like
compiling and running programs. If, however, you are working from a command line, like a DOS prompt for
example, you would use the javac command to compile a source file, and jawva to run an application®.

For our example we shall use a simple "Hello world" program:

HelloWorld.java

public class HelloWorld
{

public static void main(String[] args)

{
System.out.println ("Hello world");

}

Notice this program is not placed in a package.

Assuming you are in the directory containing this source code file, you can compile this class using the
javac.exe tool with the following command:

javac HelloWorld. java
This will produce a Java class file (HelloWorld.class).

Assuming you are now in the directory that contains this class file you can then run this program with the
java.exe tool as follows:

java HelloWorld
When running a class file you do not include the . class extension.

Figure 1 shows how this is done in a Windows® environment - HelloWorld. java resides in a directory
named hello, which is a sub-directory of the root directory.

! When installing Java an environment variable called PATH should automatically have been set so the operating system can
locate the necessary Java tools to compile, run and deploy Java programs. If this has not been done refer to your operating system’s
instructions for setting this variable The PATH variable should point to the bin folder in your JDK folder, for example
C:\ProgramFiles\Java\jdk-21.0.2\bin.

Command Prompt

C:\hello>javac HelloWorld.java

C:\hello>java HelloWorld
Hello world

C:\hello>|

Figure 1

Working in a Linux®/Mac® environment, this would look somewhat different - backslashes would be
replaced with forward slashes, for example.

When you run a class that resides in a package you must amend this slightly. As an example, imagine that
we amended the HelloWorld program (now called HelloWor1d2) by placing it in a package called
test, as follows:

HelloWorld2.java

package test;

public class HelloWorld2
{
public static void main(String[] args)
{
System.out.println ("Hello world");
}

In order to compile our file, and for it to be placed in the correct directory, we should first create a directory
called test and place our . java file into it. We should then compile it from within that directory. In our
example we have created test within the hel 1o directory (see Figure 2).

Command Prompt

C:\hello\test>javac HelloWorld2.java

C:\hello\test>|

Figure 2

To run afile that is contained in a package, you need to be in the directory above the package directory. In
this case, the directory hel1o. Additionally, you must append the class name onto the name of the package
(with a ' symbol);

java test.HelloWorld2

This is shown in Figure 3

Command Prompt

C:\hello>java test.HelloWorld2
Hello world

C:\hello3|

Figure 3

You should note that it is also possible to compile multiple files at once, separated by a space. For example:
javac MyProg.java YourProg.java
Alternatively you can use a wildcard:
javac *.java
Or for packages:
javac app/*.java test/*.java
If you do not wish to run the Java commands from the directories containing the relevant files you can set
an environment variable called CLASSPATH so that it points to the relevant directory (or directories) and
then run these commands from any directory. In Windows, it will be set, for example, as follows:
set CLASSPATH=\hello

See your operating system’s documentation for further details.

Alternatively, you can use the —cp switch (note the minus sign). —cp is a shorthand for the —classpath
switch (which can also be written as ——class-path).

Let us assume that both the HelloWorld class and the test directory reside in the hello directory,
which is a sub-directory of the root directory (see Figure 4).

root

— app
| |— Rectangle.java
| L EasyScanner.java
L— tester
L RectangleTester.java

Figure 4

In figure 5 we are running first Hel1loWorld and then HelloWor1d?2 from the root directory. In each
case the classpath indicates the he11o directory. Note that, as this is a sub-directory of the root directory,
a relative path name is acceptable.

Command Prompt

C:\>java —cp hello HelloWorld
Hello world

C:\>java —cp hello test.HelloWorld2
Hello world

C:\3

Figure 5

In many cases, an application will consist of many classes, not just a single class. If the classes are located
in different directories it is possible to specify more than one classpath, each separated by a semi-colon (;)
in Windows or a colon (:) in a Linux/Mac environment.

As an example, consider the RectangleTester from chapter 7, which required the presence of the
Rectangle class and the EasyScanner class. Imagine that the RectangleTester was located in a
folder called tester, and the Rectangle and EasyScanner classes were in a folder called app, and
that each of these directories were sub-directories of the root. We could run RectangleTester as
follows:

java -cp \app;\tester RectangleTester

This is illustrated in Figure 6

Command Prompt

C:\>java —cp \app;\tester RectangleTester
Please enter the length of your Rectangle: u
Please enter the height of your Rectangle: 5
Rectangle length is 4.8

Rectangle height is 5.0

Rectangle area is 20.0

Rectangle perimeter is 18.0

C:\3

Figure 6

As well as running individual class files from the command line, we can also run . jar files. This is described
in a separate guide.

Running JavaFX applications from the command line

We will use as an example the RectangleGUT class from chapter 17. This class requires the presence of
the Rectangle class.

Assume that both of these are contained in a folder called rect. We need to set the classpath to the
current directory, which is represented by a single dot (.) so that it can find the Rectangle class, and we
need to set the module path to the directory which contains the JavaFX files that we have downloaded
(N\JavaFx16\1ib in this case). We also need to add module components to the runtime environment as
explained in the guides. The command we need (in Windows) is:

java -cp . --module-path \javafx16\lib --add-modules javafx.controls,javafx.fxml RectangleGUI

This is shown in Figure 7.

.. B Rectangle GUI = [m] X

Length [] Height

Calculate

[cs.] Command Prompt - java |
Pt-) P

C:\rect>java —cp . ——module-path \javafx16\lib ——add-modules javafx.controls,javafx.fxml RectangleGUI

Figure 7

If you wish to run this program by double-clicking on an icon, then it is an easy matter to write this
instruction into a batch file (Windows) or a shell script (in Linux/Mac). You can then create a shortcut to link
to the batch file - if you don't wish to see the console, you can set the properties of the shortcut so that the
console starts off as minimized.

Command line arguments

Before ending this guide we can take a look at the parameter that we always give to main methods:
public static void main(String[] args)

As you know, this means that the ma in method is given an array of St ring objects as a parameter. Values
for these strings can be passed to main when you run the given class from the command line. Usually there
is no need to pass any such strings and this array of strings is effectively empty. Sometimes, however, it is
useful to send in such parameters. They are sent to main from the command line by listing the strings, one
after the other, after the name of the class as follows:

java ClassName firstString secondString otherStrings

As you can see, the strings are separated by spaces. Any number of strings can be sent in this way. For
example, if a program were called ProcessNames, two names could be sent to it as follows:

java ProcessNames Aaron Quentin
Were the strings to contain spaces, they must be enclosed in quotes:

java ProcessNames "Aaron Kans" "Quentin Charatan"
These strings will be placed into main’s array parameter (args), with the first string being at args [0],
the second at args [1] and so on. The number of strings sent to main is variable. The main method can

always determine the number of strings sent by checking the 1ength of the array (args . length).

The code for the ProcessNames class is shown below - it takes the array of strings and displays them on
the screen.

ProcessNames.java

public class ProcessNames
{
public static void main (String[] args)
{
if (args.length != 0) // check whther any arguments have been passed
{
// loop through all elements in the 'args' array
for (int i=0; i<args.length; i++)
{
// access individual strings in array
System.out.println("hello " + args[il]);

We can run this program from the command line as follows:

java ProcessNames “Batman and Robin” Superman

Notice "Batman and Robin" needs to be surrounded by quotes as it has spaces in it, whereas
Superman does not. Running this program would produce the following result, as expected:

hello Batman and Robin
hello Superman

This is illustrated in Figure 8: the ProcessNames class is in the hello directory.

Command Prompt

C:\hello>java ProcessNames "Batman and Robin" Superman
hello Batman and Robin
hello Superman

C:\hello>|

Figure 8

