Creating and Using JAR Files

A very common way of making your applications available to clients is to convert them to JAR files. A JAR
file (short for Java Archive) has the extension . jar and is simply a compressed file.

It is possible to create JAR files from the command prompt with the jar.exe tool. However, this can be
error-prone and is difficult for beginners. It is far easier to create JAR files by using an IDE, which we show

you below.

There are two main ways in which jar files can be used, and we deal with these in turn.

1. Non-executable JAR files

When an application is being compiled, one or more classes may require the presence of other classes, as
we have seen throughout the text. These classes will, of course, all need to be available when the

application is compiled. It is possible to provide some or all of these classes in the form of a JAR file.

As an example we will use some of the classes we created in chapters 7 and 8. Here we developed a class
called RectangleTester:

RectangleTester.java

public class RectangleTester
{
public static void main(String[] args)
{
double RectanglelLength, RectangleHeight;

Rectangle myRectangle;

System.out.print ("Please enter the length of your Rectangle: ");
RectanglelLength = EasyScanner.nextDouble() ;
System.out.print ("Please enter the height of your Rectangle: ");
RectangleHeight = EasyScanner.nextDouble() ;

myRectangle = new Rectangle (RectanglelLength, RectangleHeight);

System.out.println("Rectangle length is " + myRectangle.getLength());
System.out.println("Rectangle height is " + myRectangle.getHeight());
System.out.println("Rectangle area is " + myRectangle.calculateArea());
System.out.println("Rectangle perimeter is " + myRectangle.calculatePerimeter());

As can be seen, this class requires two classes to be on the classpath during the compilation -
Rectangle and EasyScanner. We will create a JAR file containing these two classes, and then show
how this can be incorporated into a project when we compile and run RectangleTester.

We will use IntelliJ® as our example IDE - other IDEs will have similar procedures, and you can find these
from the documentation for the particular IDE.

In Figure 1 we have created an Intelli) project called rect containing the two files Rectangle and
EasyScanner.
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To create a JAR file containing these two classes select File > Project Structure > Artifacts then click on the
+ sign and choose JAR > From modules with dependencies. See Figure 2
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You will now see the screen shown in Figure 3.
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You do not need a main class because we are not creating an executable file here, so simply press OK and

proceed.

In order to build the JAR file, select Build > Build Artifacts. Then select Build from the Action menu (Figure
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As shown in Figure 5, the JAR file, rect . jar will be located in the out > artifacts directory:
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We are now in a position to use this JAR file. We have created a project called JarTester in IntelliJ and
added the RectangleTester. java file to the project, as shown in Figure 6.
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As you can see from Figure 6 there are compiler errors because the files on which this class depends are
not present on the classpath. But we can add our rect . jar file to the dependencies as follows:

Select File > Project Structure, highlight Libraries then press the + sign. Choose java and you will then be
able to select the JAR file you wish to add (rect . jar in this case). See Figure 7.
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Once this has been added you will be able to compile and run RectangleTester successfully.

You have seen a practical example of this in action in section 23.7 of chapter 23 when we added a JDBC
driver, in the form of a JAR file, to our project configuration.



Our rect.jar file could also be used to compile and run RectangleTester from the command line. We
will assume that rect.jar and RectangleTester.java are both located in a folder called
JarTester. Working from within this directory, we could compile RectangleTester with the
following command:

javac -cp rect.jar RectangleTester. java

This is illustrated in Figure 8.
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We had to use the cp (classpath) argument to indicate that the required files are contained in the archive
file, rect.jar

This will create the RectangleTester.class file, which can be run with the following line as shown
in Figure 9.

java -cp rect.jar;. RectangleTester

Command Prompt

C:\JarTester>java -cp rect.jar;. RectangleTester
Please enter the length of your Rectangle: 5
Please enter the height of your Rectangle: 6
Rectangle length is 5.8

Rectangle height is 6.0

Rectangle area is 30.8

Rectangle perimeter is 22.8

C:\JarTester>|
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Note that the current directory (.) must be included in the classpath if the main class is outside the JAR.
The classpaths are separated with a semi-colon.



2. Executable JAR files

A JAR file can be made to be executable so that it can be run from the command line. Figure 10 shows a
project that has been created in Intelli). It contains four classes that were discussed in chapters 7 and 8,
and which make up a bank application. The main class is BankApplication.
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To create an executable JAR file we proceed as before (that is: select File > Project Structure > Artifacts,
click +, and choose JAR > From modules with dependencies), but this time, when we create our JAR file
we need to name the main class, as shown in Figure 11.
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A file called MANIFEST . MF file will be included in the JAR file, and this will contain the information about
which class is the main class.

We build and locate the JAR file as before (Figures 4 and 5). The resulting JAR file can now be run from the
command line as follows:

java -jar BankProject.jar
This is shown in Figure 12
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As you see, the argument -jar is used to show that we are executing a JAR file (here the file located in
the current directory).

Running JavaFX programs from the command line

In the guide for working from the command line we used as an example the RectangleGUI class from
chapter 17, which requires the presence of the Rectangle class.

Assume now that we have created an executable JAR file, rect . jar contained in a folder called rect.
We need to set the module path to the directory which contains the JavaFX files that we have
downloaded (\JavaFX16\1ib in this case). We also need to add module components to the runtime
environment as explained in the guides for using different IDEs. The command we need (in Windows®) is:

java -jar --module-path \javafx16\lib --add-modules javafx.controls,javafx.fxml rect.jar

This is shown in Figure 13.
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Double-clicking JAR files

Some of you may be aware that it is technically possible to run some JAR files by double-clicking them.
However, we do not recommend this approach for the following reasons:

e Console applications close immediately after running, making it difficult to see the output.

e JavaFX applications require special runtime options (for example --module-path) which
cannot be supplied via double-clicking.

o Troubleshooting is easier when you run your applications from a terminal or through an IDE,
where you can see any error messages.

If you wish to run your programs by double-clicking on an icon, it is much better to write the command
into a batch file (Windows) or a shell script (Linux®/Mac®). You can then create a shortcut to link to the
batch file - if you don't wish to see the console, you can set the properties of the shortcut so that the
console starts off as minimized.



