Creating and Using JAR Files

A very common way of making your applications available to clients is to convert them to JAR files. A JAR
file (short for Java Archive) has the extension . jar and is simply a compressed file.

It is possible to create JAR files from the command prompt with the jar.exe tool. However, this can be
error-prone and is difficult for beginners. It is far easier to create JAR files by using an IDE, which we show

you below.

There are two main ways in which jar files can be used, and we deal with these in turn.

1. Non-executable JAR files

When an application is being compiled, one or more classes may require the presence of other classes, as
we have seen throughout the text. These classes will, of course, all need to be available when the

application is compiled. It is possible to provide some or all of these classes in the form of a JAR file.

As an example we will use some of the classes we created in chapters 7 and 8. Here we developed a class
called RectangleTester:

RectangleTester.java

public class RectangleTester
{
public static void main(String[] args)
{
double RectanglelLength, RectangleHeight;

Rectangle myRectangle;

System.out.print ("Please enter the length of your Rectangle: ");
RectanglelLength = EasyScanner.nextDouble() ;
System.out.print ("Please enter the height of your Rectangle: ");
RectangleHeight = EasyScanner.nextDouble() ;

myRectangle = new Rectangle (RectanglelLength, RectangleHeight);

System.out.println("Rectangle length is " + myRectangle.getLength());
System.out.println("Rectangle height is " + myRectangle.getHeight());
System.out.println("Rectangle area is " + myRectangle.calculateArea());
System.out.println("Rectangle perimeter is " + myRectangle.calculatePerimeter());

As can be seen, this class requires two classes to be on the classpath during the compilation -
Rectangle and EasyScanner. We will create a JAR file containing these two classes, and then show
how this can be incorporated into a project when we compile and run RectangleTester.

We will use IntelliJ® as our example IDE - other IDEs will have similar procedures, and you can find these
from the documentation for the particular IDE.

In Figure 1 we have created an Intelli) project called rect containing the two files Rectangle and
EasyScanner.

:m File Edit View MNavigate Code Refactor Build Run Tools VCS Window Help rect - Rectangle.java = O 4

rect src '€ Rectangle L~ | A Add Configuration... Q o)
'E Prr € = = 1 — (€ EasyScannerjava € Rectanglejava : |
- R a rect ChUsers\info\Dropbox\li g8 ~ v
In > idea public class Rectangle
» out {
Yo // the attributes
< EasyScanner .)
private double length;
€ Rectangle ;) |
) private double height;
m rect.iml
o 2 [l External Libraries . |
£ ¥ " Scratches and Consoles // the methods
= the constructor
public Rectangle(double lengthIn, double heightIn)
g {
§ this.length = lengthIn;
: this.height = heightIn;
1
P Version Control = T0D0 O Problems EM Terminal & JPAsaL A Build () Event Log |
= 1:1 CRLF UTF-2 4spaces
Figure 1

To create a JAR file containing these two classes select File > Project Structure > Artifacts then click on the
+ sign and choose JAR > From modules with dependencies. See Figure 2

o _— - S -
m Project Structure X

| +
| oo Add
| Project Settings

Project Empty

| #» Run-time image (JLink)

Medul E .
ocules «» JavaFx application 5 From modules with dependencies...
Libraries N .
#+ Platform specific package >
Facets

i+ JavaFx preloader

 ome
Platform Settings
SDKs

Global Librari

Problems

? “ Cancel Apply

Figure 2

You will now see the screen shown in Figure 3.

EJ cCreate JAR from Modules x
Module: = rect v
Main Class:

JAR files from libraries

o extract to the target JAR

copy to the output directory and link via manifest

Directory for META-IMF/MANIFEST.MF:

Include tests

? “ Cancel

Figure 3

You do not need a main class because we are not creating an executable file here, so simply press OK and

proceed.

In order to build the JAR file, select Build > Build Artifacts. Then select Build from the Action menu (Figure

:m File Edit Miew MNavigate Code Refactor Build Run Tools VC3 Window Help rect - Rectangle,java = [m] x
| rect src € Rectangle L~ A Add Configuration... Q > |
g Project = € = = @ — (@ EssyScannerjava € Rectanglejava
£ v mrect C\lse e g A v
- > sidea public class Rectangle

> out {

e sic

€ EasyScanner
€ Rectangle
m rect.iml
> Il External Libraries

private double length;

nrivate double height;
Build Artifact

o —
£ » U Scratches and Consoles Action
ol / the c .
Rebuild

public Re .0 Le lengthIn, double heightIn)
5 { Edit..
= this.temgum = tengthln;
; this.height = heightIn;

i

P WVersion Control = 10D0 O Problems B4 Terminal 3 JPASQL “\ Build () Event Log

= 1:1 CRLF UTF-8 4spaces ‘i
Figure 4

As shown in Figure 5, the JAR file, rect . jar will be located in the out > artifacts directory:

:m File Edit View MNavigate Code Refacter Build Run Tools VCS Window Help rect - Rectanglejava = O X
| rect ' src (€ Rectangle 2~ A | Add Configuration... Q o > |
[Project -) = = @& — (@ EasyScannerjava € Rectanglejava 3 |
- & rect ChUsers\info\Dropbox\Intelli)Projects' g A v
- ? idea public class Rectangle
s out {
R artifacs // the attributes
V ct j .
'; S private double Llength;
rect.jar . -
- private double height;
> production
@ ~ Src A
-§ £ EasyScanner the methods
= £ Rectangle
u m rect.iml / the constructor
> Il External Libraries public Rectangle(double lengthIn, double heightIn)
E 7 " Scratches and Consoles {
£ this.length = lengthIn;
: this.height = heightlIn;
' |
P Version Contral = TO0DO O Problems Terminal & JPASOL “S Build () Event Log
|0 1:1 CRLF UTF-8 4spaces
Figure 5

We are now in a position to use this JAR file. We have created a project called JarTester in IntelliJ and
added the RectangleTester. java file to the project, as shown in Figure 6.

m File Edit View MNavigate Code Refactor Build Run Tools VIS Window Help JarTester = O x|
JarTester sre 2~ | A RectangleTester ~ | b & U QO P
(= Project = @ E = o — @ RectangleTester.java : .
2 _ — |
B v M larlester C\Usersiinfo\Dropboxiinte RectangleHeight = EasyScanner.nextl @2 ~ ¥
In > Jidea
> out , - . .
// create a new Rectangle object |
= |
& RectangleTester myRectangle = new Rectangle(ﬁectangleLengtrL.
m JarTester.iml
“ 11l External Libraries /% use the various methods of the Rectangle—
2 > 2 215 CA\Program Files\Java\jdk-2 perimeter of the Rectangle */ b
B © Scratches and Consoles System.out.println("Rectangle length is " +-
m System.ovt.println("Rectangle height is " + |
System.ovt.println("Rectangle area is " + my
£ System.ovt.println("Rectangle perimeter is ™
£ i
= I
n
P Version Control iI=T0D0 O Problems B4 Terminal &2 JPASGQL “A Build () Event Log
| 28:1 CRLF UTF-2 4spaces ‘I
Figure 6

As you can see from Figure 6 there are compiler errors because the files on which this class depends are
not present on the classpath. But we can add our rect . jar file to the dependencies as follows:

Select File > Project Structure, highlight Libraries then press the + sign. Choose java and you will then be
able to select the JAR file you wish to add (rect . jar in this case). See Figure 7.

m Project Structure *
+

| Mew Project Library
Project Settings

Project 1l Java

| From Maven...

Modules
4 KotlindJs
[Facets
Artifacts Bl select Library Files x
Platform Settings
T Select files or directories in which library classes, sources, documentation or native libraries are located
Global Libraries A+ O m; X S & Hide path
D Ch\Users\info\Dropbox\Intelli)Projects\rect\out\artifacts\rect_jar\rect.jar v
> PythonCh19
| > PythonCh20
i ’ PythonCh21
> PythonCh22
> PythonCh23
’ PythonCh24
ke Quiz
ke RecordTest
e rect
b Jidea
b out
v artifacts
e rect_jar

? production

b src

Figure 7

Once this has been added you will be able to compile and run RectangleTester successfully.

You have seen a practical example of this in action in section 23.7 of chapter 23 when we added a JDBC
driver, in the form of a JAR file, to our project configuration.

Our rect.jar file could also be used to compile and run RectangleTester from the command line. We
will assume that rect.jar and RectangleTester.java are both located in a folder called
JarTester. Working from within this directory, we could compile RectangleTester with the
following command:

javac -cp rect.jar RectangleTester. java

This is illustrated in Figure 8.

Command Prompt

C:\JarTester>javac —cp rect.jar RectangleTester.java

C:\JarTester>|

Figure 8

We had to use the cp (classpath) argument to indicate that the required files are contained in the archive
file, rect.jar

This will create the RectangleTester.class file, which can be run with the following line as shown
in Figure 9.

java -cp rect.jar;. RectangleTester

Command Prompt

C:\JarTester>java -cp rect.jar;. RectangleTester
Please enter the length of your Rectangle: 5
Please enter the height of your Rectangle: 6
Rectangle length is 5.8

Rectangle height is 6.0

Rectangle area is 30.8

Rectangle perimeter is 22.8

C:\JarTester>|

Figure 9

Note that the current directory (.) must be included in the classpath if the main class is outside the JAR.
The classpaths are separated with a semi-colon.

2. Executable JAR files

A JAR file can be made to be executable so that it can be run from the command line. Figure 10 shows a
project that has been created in Intelli). It contains four classes that were discussed in chapters 7 and 8,
and which make up a bank application. The main class is BankApplication.

File Edit View Mavigate Code Refactor Build Run Tools VC5 Window Help BankProject - BankApplication.java = O e
BankProject ' src (€ BankApplication [main 2> A Bankipplication v | b & 0 Q >
= = _ - = > . .

E E AN I -] € Bankjava £ BankAccountjava < BankApplication java € EasyScannerjava
£ ~ [BankProject Bank myBank = new Bank(); v
L] > Jddea

> out 1/ offer me

s src do

© Bank
1

£ BankA t
erAceoun System.out.printiln();

System.out.println("l. Create new account");
4 BankProjectiml = System.out.println("2. Remove an account");

> Il External Libraries System.out.println("3. Deposit money");

> Vi Scratches and Consoles System.out.println("4. Withdraw money");
System.out.println("5. Check account details");
System.out.println("6. Quit");

Queteam anut nrintlnid-

" BankApplication

€ EasyScanner

Run: BankApnplication g —
% » 4 "C:\Program Files\Java\jdk-21\bin\java.exe" "-javaagent:C:\Program Files\JetBrains\Intell1iJ TDEA Commun
254
. _ 1. Create new account

2. Remove an account
= C RS Deposit money
£ = 4. Withdraw money
ﬁ # 5. Check account details
6. Quit

I Version Contral ~ ® Run = TODO @ Problems B Terminal (&) JPAsaL A\ Build () Event Log
I Build completed successfully in 3 sec, 350 ms (today 11:03) 14:25 CRLF UTF-2 4spaces ‘i
Figure 10

To create an executable JAR file we proceed as before (that is: select File > Project Structure > Artifacts,
click +, and choose JAR > From modules with dependencies), but this time, when we create our JAR file
we need to name the main class, as shown in Figure 11.

Create JAR from Modules X
Meodule: = BankProject hd

Main Class: | BankApplication|

JAR. files from libraries

) extract to the target JAR

copy to the output directory and link via manifest

Directory for META-INF/MANIFEST.MF:
ChUsers\info\DropbodIntellProjects\BankProjectisrc

Include tests

Figure 11

A file called MANIFEST . MF file will be included in the JAR file, and this will contain the information about
which class is the main class.

We build and locate the JAR file as before (Figures 4 and 5). The resulting JAR file can now be run from the
command line as follows:

java -jar BankProject.jar
This is shown in Figure 12

Command Prompt - java -jar X + o~

M

:\bankproject>java -jar BankProject.jar

Create new account
Remove an account
Deposit money

. Withdraw money

Check account details
Quit

il
e
3.
4

5.
6.

Enter choice [1-6]: |

Figure 12

As you see, the argument -jar is used to show that we are executing a JAR file (here the file located in
the current directory).

Running JavaFX programs from the command line

In the guide for working from the command line we used as an example the RectangleGUI class from
chapter 17, which requires the presence of the Rectangle class.

Assume now that we have created an executable JAR file, rect . jar contained in a folder called rect.
We need to set the module path to the directory which contains the JavaFX files that we have
downloaded (\JavaFX16\1ib in this case). We also need to add module components to the runtime
environment as explained in the guides for using different IDEs. The command we need (in Windows®) is:

java -jar --module-path \javafx16\lib --add-modules javafx.controls,javafx.fxml rect.jar

This is shown in Figure 13.

B ' Rectangle GUI = O X

Length (I] Height

Calculate

Command Prompt - java -jar X +

C:\rect>java —jar ——module-path \javafx16\lib —-add-modules javafx.controls,javafx.fxml rect.jar

Figure 13

Double-clicking JAR files

Some of you may be aware that it is technically possible to run some JAR files by double-clicking them.
However, we do not recommend this approach for the following reasons:

e Console applications close immediately after running, making it difficult to see the output.

e JavaFX applications require special runtime options (for example --module-path) which
cannot be supplied via double-clicking.

o Troubleshooting is easier when you run your applications from a terminal or through an IDE,
where you can see any error messages.

If you wish to run your programs by double-clicking on an icon, it is much better to write the command
into a batch file (Windows) or a shell script (Linux®/Mac®). You can then create a shortcut to link to the
batch file - if you don't wish to see the console, you can set the properties of the shortcut so that the
console starts off as minimized.

