
1

Creating Modules with an IDE

In chapter 17 we showed you how to create and use modules from the command line. As we explained there,
modules can also be created with an IDE, although the process can be a little fiddly. Here we show you how to

create a modular program using Intellij. Other IDEs can be used in a similar way and instructions can be found
online.

In this guide we will show you how to create the modules discussed in chapter 17.

Creating the calculations module

Figure 1 shows the structure of the calculations module that we developed in chapter 17.

We will now create this module in IntelliJ.

Start as usual by creating a new project. Then click on File > New > Module (Figure 2).

Figure 1

Figure 2

2

You will see the screen shown in Figure 3.

Select the SDK(JDK), making sure that this is the same for the SDK chosen for the project itself, and that the same
one is chosen for each module.

You will now be able to choose the name for the module - in this case calculations (Figure 4).

Figure 3

Figure 4

3

The calculations module will now be listed in the project structure as shown in Figure 5.

Right-click on the source folder (src) - and select New > Package. You will be asked to supply a name for your
package. As shown in Figure 1, the first package should be named shapes.areas. See Figure 6.

The shapes.areas package will be listed in the src folder, as shown in Figure 7.

Figure 6

Figure 5

4

Right-click on src again, and add another package, this time calling it shapes.volumes.

You will now see both areas and volumes listed as sub-packages of shapes (Figure 8).

You can now go ahead and add the CalcAreas class and CalcVolumes class to the areas and volumes

packages respectively (Figure 9)

Figure 7

Figure 8

5

You now need to create the module descriptor. Right-click on src, select new > module-info.java. Write the

code for module-info as shown in Figure 10.

You can see that IntelliJ displays this file as module-info.java(calculations) to distinguish it from

any other module descriptors that may be present in the project.

To compile the classes and the module-info file we need to choose Build from the top menu, and then select

- in this case - Build Module 'calculations' as shown in Figure 11. Alternatively you can simply choose Build
Project to build the whole project.

Figure 9

Figure 10

6

The compiled files now appear, in the correct locations, in the out > production folder as shown in Figure 12.

Creating a JAR file from your module

You can now, if you wish, create a JAR file with which to deploy your module.

Select File > Project Structure > Artifacts.

Figure 11

Figure 12

7

Press the + sign, then highlight JAR, and then From modules with dependencies… (See Figure 13)

You will be presented with the dialogue shown in Figure 14.

Select calculations as the module. You do not need to indicate a main class, as this is not intended to be

an executable JAR.

You will now see the screen shown in Figure 15.

Figure 13

Figure 14

8

You can now press OK to finish.

You now have to build the JAR file. Select Build > Build Artifacts… from the top menu as shown in Figure 16.

Your JAR file will now be found in a directory called calculations_jar, in a folder called artifacts which is a sub
directory of out - see Figure 17.

Figure 15

Figure 16

9

Adding the moduletester module

We can now add other modules to our project. In chapter 17 we developed a module called moduletester

which made use of the calculations module. The structure of this module is shown in Figure 18.

We can proceed in the same way as before - right click on ModuleExample and create the new module,
moduletester. This will then appear in the project structure as shown in Figure 19.

Figure 17

Figure 18

10

You can now add the app package and the ShapeTester class in the same way as you did previously with the

calculations module - however, at this stage you will see that you have some compiler errors, as shown in

Figure 20.

The reason for the compiler errors is that the moduletester module requires the presence of

calculations module, so the latter has to be added to its list of dependencies. To do this proceed as follows:

Select File > Project Structure > Modules and highlight the module in question, in this case moduletester.

Select the Dependencies tab, click on the + sign as shown in Figure 21, and select Module Dependency…

Figure 19

Figure 20

11

You will then be able to select the module on which your module should depend (calculations in this case).

See figure 22.

The files will now compile successfully. All that remains is to add the module descriptor. Right-click on source
folder (src) of moduletester, and choose new module-info.java. Add the code as shown - the file will

be referred to by IntelliJ as module-info.java(moduletester) - see Figure 23.

Figure 21

Figure 22

Figure 23

12

As this module contains an executable class (ShapeTester) you can now run this class, and the build will take

place automatically as shown in Figure 24.

Summary

You’ve now created two Java modules in IntelliJ, added one as a dependency of the other, written module
descriptors, and compiled both. You also created a JAR file for a module, which can now be reused or deployed.

Figure 24

