Creating Standalone Python Applications

Using auto-py-to-exe

auto-py-to-exe is a graphics program that enables you to create executable Python
applications. It wraps a graphical interface around a program called pyinstaller. Using
pyinstaller on its own involves working in a console, so using auto-py-to-exe is more
straightforward.

In order to use auto-py-to-exe you will need to have the Python interpreter installed.

Installing auto-py-to-exe does involve working in a console, but once it is installed you
will have a graphical interface with which to create your executable files.

In windows, the easiest way to open a console is by typing cmd in the search bar. If you are
using a mac, the console is usually referred to as a terminal, and it can be opened in a variety
of ways - for example by clicking the Launchpad icon in the Dock and typing "Terminal" in the
search field, and then clicking Terminal.

To install auto-py-to-exe, you will need to use the pip program, which is located in a
directory called Scripts within the folder where your python interpreter is located.

If you are not sure where your Python interpreter is located this is you can find it by opening
a console and typing the following at the prompt:

[where python]

It may be that a path to the Scripts folder has been added to your system, in which case
you can type the pip command from anywhere within the console window. If not, you can
either navigate to this folder, or you can add the path by typing the following at the prompt:

[set PATH=%PATHS; \your\path\here\]

You will need to replace your\path\here\ with the correct path to your folder. See figure 1 as
an example.

Command Prompt

C:\Users\info>set PATH=%PATH%;\users\info\AppData\Local\Programs\Python\Python311\Scripts

Fig. 1. Setting a path

Toinstall auto-py-to-exe type the following command in the console window (see figure
2):

[pip install auto—py—to—exe]

] Command Prompt

C:\Users\info> pip install auto-py-to-exe

Fig. 2. Installing auto-py-to-exe

By default, auto-py-to-exe will be installed into the Scripts folder.

It is recommended that you create a folder in a location of your choice - called, for example,
StandAlone - and copy any files that you want to make executable into that folder. You
should also copy any files that your program imports. For example, if you wanted to make an
executable version of the RectagleGUI class from the lecture, then as well as
RectangleGUI.py, you will also need the Rectangle.py module.

When you launch auto-py-to-exe, you will see a rather cumbersome graphic, and you
will need to scroll up and down to see all the options. Figure 3 shows a portion of this graphic,
which you will find near the beginning and which you can locate by scrolling down a little way.

| # Auto Py To Exe = O X

-

! € GitHub O Help Post

| Language: | English v

‘ Script Location

| C:/Userslinfo/AppData/Local | | Browse |

| Onefile (—onedir / —onefile)

| [One Directory |[One File |

‘ Console Window (--console / —windowed)

| | Console Based || Window Based (hide the console) |

Fig. 3. Initial screen

The Script Location option allows you to browse to the file that you want to make executable.
Once you have selected your file, you should select the next option - either One Directory or
One File. Normally, you would choose One File so that you end up with a single executable
file. You should then choose whether you want your application to be console based or
window based. It is most likely that you will be creating a graphical program, in which case
you should choose Window Based. If you were creating a console based program, you would
choose the console based option?.

Don't worry that your choices are not highlighted after clicking - they will have been recorded.

You can now scroll down to the bottom of the graphic (figure 4).

| ¥ Auto Py To Exe = (] x

Settings
auto-py-to-exe Specific Options
Output Directory

‘ C\Userslinfo\AppData\Local | | Browse |
Increase Recursion Limit | Enable |

Manually Provide Options

Manual Argument Input | ARGUMENTS

Configuration

| Import Config From JSON File || Export Config To JSON File

Current Command

pyinstaller -- -
noconfirm --onedir -

Output

Something wrong with your exe? Read this post on how to fix common issues for possible
solutions.
| Convert py to exe || Open Output Folder |

Fig. 4. Creating the executable file

In the Settings section? you can choose your output directory. Browse to the directory where
you want the output file to be saved, and then press Convert .py to exe. Once the process
has completed you can open the output folder - double clicking on the file will cause it to run.

The Convert .py to exe button will now have change to Clear Output - you can press this
button and start again with a new file.

You should note that the console window will close once the program terminates, so if there is any text to
be displayed before the program ends, you should add an extra line to your application that requires some
input from the user - doing this will mean that the program can be terminated with a carriage return.

2 You might find that this section is collapsed, in which case you will need to click to expand it.

