
1

Installing and Using IntelliJ

1. Installing IntelliJ

Before downloading and installing IntelliJ, ensure that you have downloaded and installed the Java SE

Development Kit (referred to as the JDK or SDK) from the Oracle site.

The latest version can be downloaded from here:

 https://www.oracle.com/uk/java/technologies/downloads/

Once you have downloaded and installed the JDK you can then download and install IntelliJ from the following

site:

 https://www.jetbrains.com/idea/download

The Community edition is suitable for students.

Once you have installed both the JDK and IntelliJ you will be in a position to run all the programs in this book,

except those that involve JavaFX. To run JavaFX programs requires some additional steps - this is dealt with in

section 3.

2. Using IntelliJ

2.1 Configuring IntelliJ

When you first open IntelliJ you will see the home screen as shown in Figure 1. You can make some initial changes

to the configuration at this stage.

One of the changes you might wish to make is to change the colour theme. The initial theme, shown in Figure 1,

is called Darcula.

Figure 1

https://www.oracle.com/uk/java/technologies/downloads/
https://www.jetbrains.com/idea/download

2

By selecting Customize as shown in Figure 2, you can choose a new theme – we have chosen IntelliJ Light.

It is a good idea to change the code style so that the braces are lined up in a similar way to that of the book.

Again choose Customize from the home screen, then choose Code Style > Java . Under Braces Placement make

sure that Next Line is chosen for each option (Figure 3).

Figure 2

Figure 3

3

2.2 Starting a new project

Each project in InelliJ consists of a number of classe,s and sometimes additonal files - for examople image files.

While you are getting started, it might be a good idea to start a new project for each chapter of the book. When

you move on to larger applications, such as the case study in chapters 11 and 12, or applications that you are

creating yourself (such as a class assignment), you should create a single project for your application.

To create a project, choose New Project as shown in Figure 4.

You will now see the screen shown in Figure 5. Choose Java from the left-hand window. As you can see, as long

as you have downloaded a Java SE development kit as explained in section 1, then the JDK (or SDK as IntelliJ calls

it) for the project will be selected for you. By pressing the down arrow, you can select a different one if you have

downloaded more then one JDK.

Click here

to start a

new

project
Figure 4

Figure 5

4

As long as a suitable JDK is selected, you simply continue by pressing Next. You will now see the screen shown

in Figure 6.

You will not be creating a project from a template, so you can simply continue by pressing Next.

You will see the screen that appears in Figure 7. Enter a suitable name for your project (we have called it

FirstProject). You can also choose a location if you are not happy with the default location shown. Now press

Finish.

Your screen will now appear as in Figure 8, with FirstProject listed as your only open project.

Figure 6

Figure 7

5

2.3 Adding new classes to the project

When we add a new file to the project, it is important that the file is added in the correct folder. When writing

your first programs, you will not want to specify a package, and the file should therefore be added to the src

folder. The easiest way to achieve this is to right-click on the src (source) folder, then choose New followed by

Java Class (see Figure 9).

You will be prompted to enter the name of the class as shown in Figure 10. Type a class name of your choice,

and press Enter.

Right-

click

here

Figure 8

Figure 9

6

The screen shown in Figure 11 now appears. Your new class will be listed in the src folder (make sure this is

expanded), and the outline code will appear as shown.

You can now proceed to complete the code for your class as shown in Figure 12. IntelliJ offers some useful auto-

complete features, and you will see that simply typing main in the appropriate place, followed by the Enter key

will automatically provide you with the header and braces for a main method.

Type the

name of the

class here

Figure 10

Figure 11

7

2.4 Compiling and running applications

Classes are automatically compiled as soon as they are written. Error messages are indicated in red and hints

can be revealed as shown in Figure 13, in which the semi-colon has been omitted.

There are a number of different ways to run an application. Probably the easiest way is to press shift+ctrl+F10

on the active window containing the main class. Alternatively you can click on one of the green arrows that

appear in the gutter (as you can see in Figure 12) – or right-click on the class in the list and choose the Run option

from the drop down menu (or again press shift+ctrl+F10).

Running a non-graphics program will cause the output to be displayed in an output window as shown in Figure

14. This window can be made to float, if you prefer (this can be achieved simply by dragging it).

Figure 12

Figure 13

8

2.5 Adding existing classes to projects

Existing classes (that is to say, the source code) can be added to the project simply by placing them in

the correct folder. The easiest way to do this is to copy or drag them into the folder within the IntelliJ

environment. For example they can be placed into the src folder. All the classes will then appear in

the project as shown in Figure 15.

Figure 14

Figure 15

Output

from

program

9

3 Creating JavaFX projects

There are two ways we can do this. The first is to download and use the JavaFX SDK - At the time of writing the

latest stable version is JavaFX17. The second is to use the IntelliJ JavaFX plugin. Both of these are described

below.

3.1 Using the JavaFX SDK

Download the JavaFX SDK (which comes in the form of a zipped file) from the link below.

 https://gluonhq.com/products/javafx/

Extract the files to a location of your choice. Here we will assume they are in a folder called:

 C:\JavaFX

The above assumes the use of a Windows operating system. If you are using another operating system such

as Linux or MacOS, note that such systems use the forward slash instead of the backslash, and use the mount

point (/) instead of a drive letter.

Within the folder where you have unzipped your files, there will be another folder called lib which contains the

required .jar files. There will also be a folder called bin and a folder called legal.

The above step only has to be done once. However the following steps have to be followed for each new project.

Start a new project - do not choose a JavaFX project, just choose a regular Java project as before.

With the project open, choose File > Project Structure. Highlight Libraries, as shown in Figure 16.

Figure 16

https://gluonhq.com/products/javafx/

10

Now click on the + sign to create a new project library. Choose Java (Figure 17).

You will now be presented with the window shown in Figure 18. Browse to the location of the JavaFX\lib folder

(or equivalent if you are using macOS, Linux etc) that you created earlier (in our case c:\javafx\lib) and select all

the files from that folder as shown.

You can now go ahead and create a new JavaFX application. Add your new file to the src folder in the usual way

- if you have carried out the above steps correctly, you will find that your program compiles successfully.

However if you try running the program you will get a runtime error. This happens because IntelliJ does not add

all the modules to the module path. To fix this, choose Run > Edit Configurations. The screen shown in Figure

19 will appear.

Figure 17

Figure 18

11

Click on Modify options (in the top right hand corner).

You will now see that that there is a box into which you can enter the VM Options (Figure 20).

In this box enter the following, if necessary replacing the directory (in red) with your own location for the JavaFX

files (see Figure 21) - don't forget that the path name should be enclosed in quotes if it contains spaces.

 --module-path c:\javafx\lib --add-modules javafx.controls,javafx.fxml

Figure 19

Figure 20

12

Your JavaFX program should run without any problems.

Don't forget that the above steps need to be carried out for each new project.

3.2. Using the JavaFX plugin

The first thing you should do is to check that the JavaFX plugin is installed. You can do this by selecting Plugins

from the home screen as shown in Figure 22. If it is not, then make sure it is ticked.

Figure 22

Figure 21

13

Now you can start the project. This time, choose a JavaFX project, rather than a Java project as shown in Figure

23 and give it a name as usual – we have chosen FirstJavaFXProject.

The screen shown in Figure 24 will appear. You do not need any of the dependencies at this stage, so you can

simply proceed by pressing Next.

Figure 23

Figure 24

14

Your project will now be listed in the left-hand window as shown in Figure 25.

As you can see, a sample class called HelloApplication is provided for you – this can be deleted later. Initially the

folders are collapsed, so it is a good idea to expand them as shown in Figure 26.

You can now create a new class. JavaFX projects will not allow your class to be in an unnamed package,

and must be in a named package, corresponding to a folder. The easiest way to proceed is to create

your class in the sample package, which will be named according to the name of the project – in our

case this will be com.example.firstjavafxproject. We can rename this later if we want.

So right-click on this folder, choose New > Java Class and provide a name (ChangingFace in our case) – see Figure

27.

Figure 26

Figure 25

15

Figure 28 shows that your class is now listed in the correct folder and that the following required line of code

has automatically been inserted for you:

 package com.example.firstjavafxproject;

At this stage you can, if you wish, rename your project. Right-click on the folder as shown in Figure 29 and choose

Refactor > Rename.

Figure 27

Figure 28

16

You will be presented with the dialogue shown in Figure 30. It is recommended that you choose In Whole Project,

which will simplify the directory structure.

You will now be able to choose a new name for your package (Figure 31).

Figure 29

Figure 30

Figure 31

17

If you enter a simple package name such as casestudy without a full domain-style structure, IntelliJ will relocate

the package accordingly, as shown in Figure 32. As you can see the package instruction in the class has also been

changed.

You can now go on to write the code for your class, and to run your application as before. You can also delete

the sample classes HelloApplication and HelloController if you wish.

Figure 32

